Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 143: 106965, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064804

RESUMO

New analogs of the well-known bioactive trihydroxy-stilbene resveratrol were synthesized to investigate their potential biological activity. The focus was on assessing their ability to inhibit cholinesterase enzymes (ChEs) and their antioxidative properties, which were thoroughly examined. New resveratrol analogs were synthesized through Wittig or McMurry reaction in moderate-to-good yields. In all synthetic pathways, mixtures of cis- and trans-isomers were obtained, then separated by chromatography, and trans-isomers were isolated as targeted structures. The stilbene derivatives underwent evaluation for antioxidant activity (AOA) using DPPH and CUPRAC assay, and their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was also measured. The biological tests have shown that the same compounds exhibited significant antioxidative and butyrylcholinesterase inhibitory potential, as evidenced by lower IC50 values compared to the established standards, trans-resveratrol, and galantamine, respectively. Additionally, molecular docking of the selected synthesized potential inhibitors to the enzyme's active site was performed, followed by assessing the complex stability using molecular dynamics simulation lasting 100 ns. Lastly, the new compounds underwent examination to determine their potential mutagenicity.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Resveratrol/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antioxidantes/farmacologia
2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834138

RESUMO

New 1,2,3-triazolo(thieno)stilbenes were synthesized as mixtures of isomers and efficiently photochemically transformed to their corresponding substituted thienobenzo/naphtho-triazoles in high isolated yields. The resulting photoproducts were studied as acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors without or with interconnected inhibition potential of TNF-α cytokine production. The most promising anti-inflammatory activity was shown again by naphtho-triazoles, with a derivative featuring 4-pentenyl substituents exhibiting notable potential as a cholinesterase inhibitor. To identify interactions between ligands and the active site of cholinesterases, molecular docking was performed for the best potential inhibitors. Additionally, molecular dynamics simulations were employed to assess and validate the stability and flexibility of the protein-ligand complexes generated through docking.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Triazóis/farmacologia , Triazóis/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Ligantes
3.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142490

RESUMO

A simple but efficient computational approach to calculate pKa in acetonitrile for a set of phosphorus, nitrogen, and carbon bases was established. A linear function that describes relations between the calculated ΔG'a.sol(BH+) and pKa values was determined for each group of bases. The best model was obtained through the variations in the basis set, in the level of theory (density functionals or MP2), and in the continuum solvation model (IPCM, CPCM, or SMD). The combination of the IPCM/B3LYP/6-311+G(d,p) solvation approach with MP2/6-311+G(2df,p)//B3LYP/6-31G(d) gas-phase energies provided very good results for all three groups of bases with R2 values close to or above 0.99. Interestingly, the slopes and the intercepts of the obtained linear functions showed significant deviations from the theoretical values. We made a linear plot utilizing all the conducted calculations and all the structural variations and employed methods to prove the systematic nature of the intercept/slope dependence. The interpolation of the intercept to the ideal slope value enabled us to determine the Gibbs energy of the proton in acetonitrile, which amounted to -258.8 kcal mol-1. The obtained value was in excellent agreement with previously published results.


Assuntos
Carbono , Prótons , Acetonitrilas/química , Clormerodrina/análogos & derivados , Nitrogênio , Fósforo , Termodinâmica
4.
Acc Chem Res ; 54(15): 3108-3123, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34308625

RESUMO

ConspectusOne of the constant challenges of synthetic chemistry is the molecular design and synthesis of nonionic, metal-free superbases as chemically stable neutral organic compounds of moderate molecular weight, intrinsically high thermodynamic basicity, adaptable kinetic basicity, and weak or tunable nucleophilicity at their nitrogen, phosphorus, or carbon basicity centers. Such superbases can catalyze numerous reactions, ranging from C-C bond formation to cycloadditions and polymerization, to name just a few. Additional benefits of organic superbases, as opposed to their inorganic counterparts, are their solubility in organic reaction media, mild reaction conditions, and higher selectivity. Approaching such superbasic compounds remains a continuous challenge. However, recent advances in synthetic methodology and theoretical understanding have resulted in new design principles and synthetic strategies toward superbases. Our computational contributions have demonstrated that the gas-phase basicity region of 350 kcal mol-1 and even beyond is easily reachable by organosuperbases. However, despite record-high basicities, the physical limitations of many of these compounds become quickly evident. The typically large molecular weight of these molecules and their sensitivity to ordinary reaction conditions prevent them from being practical, even though their preparation is often not too difficult. Thus, obviously structural limitations with respect to molecular weight and structural complexity must be imposed on the design of new synthetically useful organic superbases, but strategies for increasing their basicity remain important.The contemporary design of novel organic superbases is illustrated by phosphazenyl phosphanes displaying gas-phase basicities (GB) above 300 kcal mol-1 but having molecular weights well below 1000 g·mol-1. This approach is based on a reconsideration of phosphorus(III) compounds, which goes along with increasing their stability in solution. Another example is the preparation of carbodiphosphoranes incorporating pyrrolidine, tetramethylguanidine, or hexamethylphosphazene as a substituent. With gas-phase proton affinities of up to 300 kcal mol-1, they are among the top nonionic carbon bases on the basicity scale. Remarkably, the high basicity of these compounds is achieved at molecular weights of around 600 g·mol-1. Another approach to achieving high basicity through the cooperative effect of multiple intramolecular hydrogen bonding, which increases the stabilization of conjugate acids, has recently been confirmed.This Account focuses on our efforts to produce superbasic molecules that embody many desirable traits, but other groups' approaches will also be discussed. We reveal the crucial structural features of superbases and place them on known basicity scales. We discuss the emerging potential and current limits of their application and give a general outlook into the future.

5.
Chemistry ; 27(29): 7930-7941, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33792120

RESUMO

Diol dehydratase, dependent on coenzyme B12 (B12 -dDDH), displays a peculiar feature of being inactivated by its native substrate glycerol (GOL). Surprisingly, the isofunctional enzyme, B12 -independent glycerol dehydratase (B12 -iGDH), does not undergo suicide inactivation by GOL. Herein we present a series of QM/MM and MD calculations aimed at understanding the mechanisms of substrate-induced suicide inactivation in B12 -dDDH and that of resistance of B12 -iGDH to inactivation. We show that the first step in the enzymatic transformation of GOL, hydrogen abstraction, can occur from both ends of the substrate (either C1 or C3 of GOL). Whereas C1 abstraction in both enzymes leads to product formation, C3 abstraction in B12 -dDDH results in the formation of a low energy radical intermediate, which is effectively trapped within a deep well on the potential energy surface. The long lifetime of this radical intermediate likely enables its side reactions, leading to inactivation. In B12 -iGDH, by comparison, C3 abstraction is an endothermic step; consequently, the resultant radical intermediate is not of low energy, and the reverse process of reforming the reactant is possible.


Assuntos
Propanodiol Desidratase , Cobamidas , Glicerol , Humanos , Hidroliases , Fosfotreonina/análogos & derivados
6.
J Am Soc Mass Spectrom ; 32(4): 1116-1125, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780622

RESUMO

The metabolism of vitamin D3 includes a parallel C-3 epimerization pathway-in addition to the standard metabolic processes for vitamin D3-reversing the stereochemical configuration of the -OH group at carbon-3 (ß→α). While the biological function of the 3α epimer has not been elucidated yet, the additional species cannot be neglected in the analytical determination of vitamin D3, as it has the potential to introduce analytical errors if not properly accounted for. Recently, some inconsistent mass spectral behavior was seen for the 25-hydroxyvitamin D3 (25(OH)D3) epimers during quantification using electrospray LC-MS/MS. The present work extends that of Flynn et al. ( Ann. Clin. Biochem. 2014, 51, 352-559) and van den Ouweland et al. ( J. Chromatogr. B 2014, 967, 195-202), who reported larger electrospray ionization response factors for the 3α epimer of 25(OH)D3 in human serum samples as compared to the regular 3ß variant. The present work was concerned with the mechanistic reasons for these differences. We used a combination of electrospray ionization, atmospheric pressure chemical ionization, and density functional theory calculations to uncover structural dissimilarities between the epimers. A plausible mechanism is described based on intramolecular hydrogen bonding in the gas phase, which creates a small difference of proton affinities between the epimers. More importantly, this mechanism allows the explanation of the different ionization efficiencies of the epimers based on kinetic control of the ionization process, where ionization initially takes place at the hydroxyl group with subsequent proton transfer to a basic carbon atom. The barrier for this transfer differs between the epimers and is in direct competition with H2O elimination from the protonated hydroxyl group. The "hidden" site of high gas phase basicity was revealed through computational calculations and appears to be inaccessible via direct protonation.


Assuntos
Calcifediol/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Calcifediol/química , Teoria da Densidade Funcional , Gases , Estrutura Molecular , Prótons , Solventes , Estereoisomerismo
7.
J Org Chem ; 85(17): 11375-11381, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786642

RESUMO

In this study, using a computational approach, we are pursuing to find a proper answer about the possible application of fused TIs as superbases through the calculation and discussion of standard thermochemistry parameters, like gas-phase basicity (GB) and proton affinity (PA). In some studied cases, the role of aromaticity/antiaromaticity fluctuations supposed to be more important than mesomeric effects. In this sense, nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID) were utilized in this study to probe into the aromaticity-related parameters of the proposed molecules. Results revealed the highest GB/PA values for the molecules having cyclobutadiene in between two troponimines. Additional investigation was performed into the other candidates of cyclobutadiene-fused troponimines by substituting several electron donors along with the changing position of donors. Some novel superbases offered record-holding GB/PA values so that PA magnitudes higher than 300 kcal mol-1 are now feasible for nonphosphorous neutral organic superbases (NOS).

8.
Org Lett ; 21(22): 9142-9146, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31680528

RESUMO

With the synthesis of N,N',N″,N‴-tetrakis(3-(dimethylamino)propyl)triaminophosphazene (TDMPP, 1), we present the first phosphazene superbase with enhanced basicity through the effect of multiple intramolecular hydrogen bonding (IHB). Due to intramolecular solvation of four NH protons, the proton affinity is even higher than that of second-order phosphazene (dma)P2-tBu. X-ray structural proof, NMR titration experiments, and computational investigations provide a more detailed quantitative description of the IHB influence on the superbasicity of 1 in solid-state, solution, and the gas-phase.

9.
J Phys Chem B ; 123(29): 6178-6187, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31251060

RESUMO

Molecular dynamics (MD) simulations have been employed for the first time to gain insight into the geometry of glycerol (GOL) bound within the active site of B12-dependent diol dehydratase (B12-dDDH). A peculiar feature of the B12-dDDH enzyme is that it undergoes suicidal inactivation by the substrate glycerol. To fully understand the inactivation mechanism, it is crucial to identify all possible interactions between GOL and the surrounding amino acid residues in the enzyme-substrate complex. Particularly important is the orientation of the C3-OH group in GOL since the presence of this OH group is the only difference between GOL and propanediol (PDO), a substrate for B12-dDDH that does not induce suicidal inactivation. The MD simulations indicate that glycerol can adopt two conformations that differ with respect to the orientation of the C3-OH group; in one conformer, the C3-OH group is oriented toward Ser301 (C3-OH···Ser301), and in the other toward Asp335 (C3-OH···Asp335). Although the former configuration is consistent with the crystal structure of B12-dDDH crystallized with cyanocobalamin (CNCbl) as the cofactor, MD simulations of this system suggest a substantial predominance of the latter conformer. A similar result with an even higher preference for the latter conformer is obtained for B12-dDDH with 5'-deoxyadenosylcobalamin (AdoCbl) as a cofactor. Employing QM/MM calculations it is found that the energy difference between the two conformers of GOL is very small in CNCbl B12-dDDH, where the slightly preferred conformer is C3-OH···Ser301. However, in AdoCbl B12-dDDH, this energy difference is higher, implying that GOL exists predominantly as the C3-OH···Asp335 conformer. These findings offer a new perspective for investigations of substrate-induced inactivation of the B12-dDDH enzyme.


Assuntos
Domínio Catalítico , Cobamidas/metabolismo , Glicerol/metabolismo , Simulação de Dinâmica Molecular , Propanodiol Desidratase/química , Propanodiol Desidratase/metabolismo , Cristalografia por Raios X , Ligação Proteica
10.
Angew Chem Int Ed Engl ; 58(30): 10335-10339, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31037821

RESUMO

It was discovered that phosphazenyl phosphines (PAPs) can be stronger P-superbases than the corresponding Schwesinger type phosphazene N-superbases. A simple synthetic access to this class of PR3 derivatives including their homologization is described. XRD structures, proton affinities (PA), and gas-phase basicities (GB) as well as calculated and experimental pK BH + values in THF are presented. In contrast to their N-basic counterparts, PAPs are also privileged ligands in transition metal chemistry. In fact, they are currently the strongest uncharged P-donors known, exceeding classical and more recently discovered ligands such as PtBu3 and imidazolin-2-ylidenaminophosphines (IAPs) with respect to their low Tolman electronic parameters (TEPs) and large cone angles.

11.
Chem Sci ; 10(41): 9483-9492, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055322

RESUMO

A new generation of carbodiphosphoranes (CDPs), incorporating pyrrolidine, tetramethylguanidine, or tris(dimethylamino)phosphazene as substituents is introduced as the most powerful class of non-ionic carbon superbases on the basicity scale to date. The synthetic approach as well as NMR spectroscopic and structural characteristics in the free and protonated form are described. Investigation of basicity in solution and in the gas phase by experimental and theoretical means provides the to our knowledge first reported pK BH + values for CDPs in the literature and suggest them as upper tier superbases.

12.
Anal Chem ; 90(21): 12592-12600, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30260620

RESUMO

Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and >440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.


Assuntos
Fármacos do Sistema Nervoso Central/análise , Nitrilas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Química Encefálica , Calibragem , Fármacos do Sistema Nervoso Central/química , Clonidina/análise , Clonidina/química , Clozapina/análise , Clozapina/química , Interações Hidrofóbicas e Hidrofílicas , Imipramina/análise , Imipramina/química , Ketamina/análise , Ketamina/química , Limite de Detecção , Camundongos Endogâmicos C57BL , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Xilazina/análise , Xilazina/química
13.
J Am Chem Soc ; 140(27): 8487-8496, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894625

RESUMO

We present a series of QM/MM calculations aimed at understanding the mechanism of the biological dehydration of glycerol. Strikingly and unusually, this process is catalyzed by two different radical enzymes, one of which is a coenzyme-B12-dependent enzyme and the other which is a coenzyme-B12-independent enzyme. We show that glycerol dehydration in the presence of the coenzyme-B12-dependent enzyme proceeds via a 1,2-OH shift, which benefits from a significant catalytic reduction in the barrier. In contrast, the same reaction in the presence of the coenzyme-B12-independent enzyme is unlikely to involve the 1,2-OH shift; instead, a strong preference for direct loss of water from a radical intermediate is indicated. We show that this preference, and ultimately the evolution of such enzymes, is strongly linked with the reactivities of the species responsible for abstracting a hydrogen atom from the substrate. It appears that the hydrogen-reabstraction step involving the product-related radical is fundamental to the mechanistic preference. The unconventional 1,2-OH shift seems to be required to generate a product-related radical of sufficient reactivity to cleave the relatively inactive C-H bond arising from the B12 cofactor. In the absence of B12, it is the relatively weak S-H bond of a cysteine residue that must be homolyzed. Such a transformation is much less demanding, and its inclusion apparently enables a simpler overall dehydration mechanism.


Assuntos
Clostridium butyricum/enzimologia , Gliceraldeído/análogos & derivados , Glicerol/metabolismo , Hidroliases/metabolismo , Klebsiella pneumoniae/enzimologia , Propano/metabolismo , Vitamina B 12/metabolismo , Biocatálise , Clostridium butyricum/química , Clostridium butyricum/metabolismo , Gliceraldeído/química , Gliceraldeído/metabolismo , Glicerol/química , Klebsiella pneumoniae/química , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Propano/química , Vitamina B 12/química
14.
Chem Commun (Camb) ; 54(17): 2094-2097, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29323680

RESUMO

The trans-configured square-planar complex of dichloropalladium and chiral monodentate phosphine ligands forms self-complementary dimers through 16 hydrogen bonded amides and π-π stacking in chlorinated solvents. The self-assembly is controlled by cis-trans isomerisation of the metal center, where the trans-configuration governs the dimer formation.

15.
Chemistry ; 23(11): 2591-2598, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28128480

RESUMO

The linkage of two P2 -phosphazenyl groups through a C2 -symmetric (R,R)-1,2-diaminocyclohexane (DACH) backbone yielded the new chiral superbases DACH-P2 NMe2 and DACH-P2 Pyr (Pyr=pyrrolidinyl). These bases were prepared by a Kirsanov reaction and studied with respect to their spectroscopic and structural characteristics. Theoretical calculations concerning their basicity properties revealed remarkable pKBH+ values of 38.1 and 39.9 on the acetonitrile scale; this makes them the strongest nonionic chiral superbases known to date.

16.
Chemistry ; 21(16): 6132-43, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25754795

RESUMO

Model studies of prebiotic chemistry have revealed compelling routes for the formation of the building blocks of proteins and RNA, but not DNA. Today, deoxynucleotides required for the construction of DNA are produced by reduction of nucleotides catalysed by ribonucleotide reductases, which are radical enzymes. This study considers potential non-enzymatic routes via intermediate radicals for the ancient formation of deoxynucleotides. In this context, several mechanisms for ribonucleotide reduction, in a putative H2 S/HS(.) environment, are characterized using computational chemistry. A bio-inspired mechanistic cycle involving a keto intermediate and HSSH production is found to be potentially viable. An alternative pathway, proceeding through an enol intermediate is found to exhibit similar energetic requirements. Non-cyclical pathways, in which HSS(.) is generated in the final step instead of HS(.) , show a markedly increased thermodynamic driving force (ca. 70 kJ mol(-1) ) and thus warrant serious consideration in the context of the prebiotic ribonucleotide reduction.


Assuntos
DNA/química , Desoxirribonucleotídeos/química , Radicais Livres/química , Origem da Vida , Ribonucleotídeos/química , Sulfeto de Hidrogênio/química , Modelos Moleculares , Oxirredução , RNA/química
17.
J Am Soc Mass Spectrom ; 26(5): 833-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25762153

RESUMO

The reactivity of new biologically active thymine derivatives substituted with 2-(arylsulfonamidino)ethyl group at N1 and N3 position was investigated in the gas phase using CID experiments (ESI-MS/MS) and by density functional theory (DFT) calculations. Both derivatives show similar chemistry in the negative mode with a retro-Michael addition (Path A(-)) being the most abundant reaction channel, which correlate well with the fluoride induced retro-Michael addition observed in solution. The difference in the fragmentation of N-3 substituted thymine 5 and N-1 substituted thymine 1 in the positive mode relates to the preferred cleavage of the sulfonyl group (m/z 155, Path B) in N-3 isomer and the formation of the acryl sulfonamidine 3 (m/z 309) via Path A in N-1 isomer. Mechanistic studies of the cleavage reaction conducted by DFT calculations give the trend of the calculated activation energies that agree well with the experimental observations. A mechanism of the retro-Michael reaction was interpreted as a McLafferty type of fragmentation, which includes Hß proton shift to one of the neighboring oxygen atoms in a 1,5-fashion inducing N1(N3)-Cα bond scission. This mechanism was found to be kinetically favorable over other tested mechanisms. Significant difference in the observed fragmentation pattern of N-1 and N-3 isomers proves the ESI-MS/MS technique as an excellent method for tracking the fate of similar sulfonamidine drugs. Also, the observed N-1 and/or N-3 thymine alkylation with in situ formed reactive acryl sulfonamidine 3 as a Michael acceptor may open interesting possibilities for the preparation of other N-3 substituted pyrimidines.


Assuntos
Antineoplásicos/química , Modelos Moleculares , Sulfonamidas/química , Timina/análogos & derivados , Compostos de Tosil/química , Catálise , Estabilidade de Medicamentos , Transferência de Energia , Temperatura Alta , Indicadores e Reagentes/química , Isomerismo , Estrutura Molecular , Compostos de Amônio Quaternário/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Timina/química
18.
J Am Soc Mass Spectrom ; 25(11): 1974-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25201456

RESUMO

This study presents a detailed experimental investigation of charge isomers of protonated 4-quinolone antibiotics molecules formed during electrospray ionization (ESI) with proposed dissociation mechanisms after collisional activation. Piperazinyl quinolones have been previously shown to exhibit erratic behavior during tandem MS analyses of biological samples, which originated from varying ratios of two isomeric variants formed during ESI. Here, a combination of ESI-collision-induced dissociation (CID), differential ion mobility spectrometry (DMS), high resolution MS, and density functional theory (DFT) was used to investigate the underlying mechanisms of isomer formation and their individual dissociation behaviors. The study focused on ciprofloxacin; major findings were confirmed using structurally related 4-quinolones. DFT calculations showed a reversal of basicity for piperazinyl quinolones between liquid and gas phase. We provide an experimental comparison and theoretical treatment of factors influencing the formation ratio of the charge isomers during ESI, including solvent pH, protic/aprotic nature of solvent, and structural effects such as pK a and proton affinity. The actual dissociation mechanisms of the isomers of the protonated molecules were studied by separating the individual isomers via DMS-MS, which allowed type-specific CID spectra to be recorded. Both primary CID reactions of the two charge isomers originated from the same carboxyl group by charge-remote (CO(2) loss) and charge-mediated (H(2)O loss) fragmentation of the piperazinyl quinolones, depending on whether the proton resides on the more basic keto or the piperazinyl group, followed by a number of secondary dissociation reactions. The proposed mechanisms were supported by calculated energies of precursors, transition states, and products for competing pathways.


Assuntos
4-Quinolonas/química , Antibacterianos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , 4-Quinolonas/análise , Antibacterianos/análise , Gases , Isomerismo , Prótons
19.
Chemistry ; 20(25): 7670-85, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24797248

RESUMO

Herein we describe an easily accessible class of superbasic proton sponges based on the 1,8-bisphosphazenylnaphthalene (PN) proton pincer motif and P-alkyl substituents ranging from methyl (TMPN) to n-butyl (TBPN), isopropyl (TiPrPN) and cyclopentyl (TcyPPN). These neutral bases with a pK(BH)(+) value (MeCN) of ~30 were accessible via a Kirsanov condensation using commercially available 1,8-diaminonaphthalene, and in case of TMPN and TBPN, simple one-pot procedures starting from trisalkylphosphanes can be performed. Furthermore, the known pyrrolidinyl-substituted superbase TPPN previously synthesized via a Staudinger reaction could also be prepared by the Kirsanov strategy allowing its preparation in a larger scale. The four alkyl-substituted proton sponges were structurally characterized in their protonated form; molecular XRD structures were also obtained for unprotonated TiPrPN and TcyPPN. Moreover, we present a detailed description of spectroscopic features of chelating bisphosphazenes including TPPN and its hyperbasic homologue P2-TPPN on which we reported recently. The four alkyl-substituted superbases were investigated with respect to their basic features by computational means and by NMR titration experiments revealing unexpectedly high experimental pK(BH)(+) values in acetonitrile between 29.3 for TMPN and 30.9 for TBPN. Besides their thermodynamic basicity, we exemplarily studied the kinetic basicity of TMPN and TPPN by means of NMR-spectroscopic methods. Furthermore, the competing nucleophilic versus basic properties were examined by reacting the proton sponges with ethyl iodide. Insight into the coordination chemistry of chelating superbases was provided by reacting TMPN with trimethylaluminum and trimethylgallium to give cationic complexes of Group XIII metal alkyls that were structurally characterized.

20.
Chemistry ; 20(20): 5994-6009, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24687589

RESUMO

Investigations on the Staudinger reaction between 1,8-diazidonaphthalene and phosphorous(III) building blocks, a key step in the synthesis of superbasic bisphosphazene proton sponges, yielded a set of bisphosphazides with a constrained geometry 1,8-disubstituted naphthalene backbone. This compound class has attracted our interest not only due to their surprisingly high stability, but in particular because of their theoretically predicted basicity in the range of their bisphosphazene analogues that can be referred to the constrained geometry interaction of two highly basic nitrogen atoms. Eleven new bisphosphazides bearing simple P-amino groups as well as P-guanidino substituents, azaphosphatrane moieties, P2 building blocks, or chiral P-amino substituents derived from L-proline are presented. They were studied concerning their spectroscopic properties and partly also their chromophoric and structural features. In the case of the pyrrolidino-substituted TPPN(2N2) (TPPN = 1,8-bis(trispyrrolidinophosphazenyl)naphthalene), the stepwise nitrogen elimination is investigated theoretically and experimentally, which led to the isolation and structural characterization of TPPN(1N2) bearing a phosphazide and a phosphazene functionality in one molecule. Attempts to protonate the obtained bisphosphazides and to prove the computationally predicted pKBH(+) values through NMR titration reactions resulted in their decay, which again was rationalized by theoretical calculations. Altogether we present the so far most extensive spectroscopic, structural and theoretical investigation of constrained geometry bisphosphazides and their Brønsted and Lewis basic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...